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Evaluating the consequences of common assumptions in run
reconstructions on Pacific salmon biological status assessments
Stephanie J. Peacock, Eric Hertz, Carrie A. Holt, Brendan Connors, Cameron Freshwater,
and Katrina Connors

Abstract: Information on biological status is essential for designing, implementing, and evaluating management strategies and
recovery plans for threatened or exploited species. However, the data required to quantify status are often limited, and it is
important to understand how assessments of status may be biased by assumptions in data analysis. For Pacific salmon, biological
status assessments based on spawner abundances and spawner–recruitment (SR) analyses often involve “run reconstructions”
that impute missing spawner data, expand observed spawner abundance to account for unmonitored streams, assign catch to
individual stocks, and quantify age-at-return. Using a stochastic simulation approach, we quantified how common assumptions
in run reconstructions biased assessments of biological status based on spawner abundance. We found that status assessments
were robust to most common assumptions in run reconstructions, even in the face of declining monitoring coverage, but that
overestimating catch tended to increase rates of status misclassification. Our results lend confidence to biological status
assessments based on spawner abundances and SR analyses, even in the face of incomplete data.

Résumé : Il est nécessaire de disposer d’information sur l’état biologique pour la conception, la mise en œuvre et l’évaluation
de stratégies de gestion et de plans de rétablissement visant des espèces menacées ou exploitées. Les données requises pour
quantifier cet état sont toutefois souvent limitées, et il importe de comprendre comment des évaluations de l’état peuvent être
biaisées par les hypothèses qui sous-tendent l’analyse des données. Pour les saumons du Pacifique, les évaluations de l’état
biologique reposant sur l’abondance de géniteurs et les analyses de recrutement–géniteurs (RG) comprennent souvent des
« reconstitutions de montaison » qui imputent des données manquantes sur les géniteurs, rehaussent l’abondance de géniteurs
observée pour tenir compte des cours d’eau qui ne font pas l’objet d’une surveillance, assignent les prises à différents stocks et
quantifient l’âge au moment du retour. En utilisant une approche de simulation stochastique, nous quantifions comment des
hypothèses répandues dans les reconstitutions de montaison biaisent les évaluations de l’état biologique reposant sur
l’abondance de géniteurs. Nous constatons que les évaluations de l’état sont robustes pour la plupart des hypothèses courantes
qui sous-tendent les reconstitutions de montaison, même dans les cas où la couverture de la surveillance diminue, mais que la
surestimation des prises tend à accroître la fréquence de classifications erronées de l’état. Nos résultats témoignent de la fiabilité
des évaluations de l’état biologique basées sur l’abondance de géniteurs et les analyses RG, même dans des situations de données
incomplètes. [Traduit par la Rédaction]

Introduction
Timely and effective management of fish and wildlife relies on

accurate information about the current biological status of popu-
lations. Status assessments form the basis of many conservation
decision-support tools, though they have limited influence with-
out clear and binding linkages to policy and decision making.
Methods to determine the allocation of resources that maximize
biodiversity conservation, such as priority threat management
(Martin et al. 2018; Carwardine et al. 2019; Walsh et al. 2020), are
most effective when baseline information on status can help iden-
tify which threatened populations are at highest risk of extirpa-
tion without management intervention and which are most likely
to benefit from recovery planning given limited resources. Met-
rics of biological status may also be useful for defining recovery
goals and as performance measures when evaluating the effec-
tiveness of different management strategies (e.g., Walsh et al.
2020). Knowledge of current biological status is therefore needed

for both implementing and evaluating management strategies
and recovery plans.

Despite the recognized need for information on biological sta-
tus, complete data on abundance, trends, and demographic pa-
rameters are rarely available for populations or species that need
to be assessed (IUCN 2017). Improving the analytical approaches
used to quantify status is one way to reduce assumptions and limit
the bias in status outcomes from low-quality or -quantity data
(e.g., Fleischman et al. 2013; Staton et al. 2020), but the methods
widely applied in assessing fish and wildlife can be slow to change
(Peterman 2018), and analytical resources are sometimes not avail-
able to implement new advanced approaches on all populations
or species of interest. Thus, evaluating the impact of assumptions
in the approaches that are widely applied is critical to understand-
ing the potential biases, uncertainty, and limitations of status
assessments (Chen et al. 2003; Wetzel and Punt 2011).
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Closed-loop simulation models are useful tools for evaluating
the potential biases in status assessments due to various ecolog-
ical and management uncertainties (Walters 1986). The major
advantages of simulation approaches (over, for example,
retrospective analyses) are that the model can be tailored to dif-
ferent biological and management scenarios, allowing manage-
ment strategy evaluation (e.g., Punt 1992; Holt and Peterman
2006, 2008), and the true status of the system is known perfectly,
allowing quantification of bias in estimated parameters (e.g.,
Pyper and Peterman 1998; Dorner et al. 2009) and estimated status
(e.g., Peacock and Holt 2012; Holt and Folkes 2015; Holt et al. 2018).
Simulation approaches are extremely flexible and enable testing
common assumptions that underpin status assessments at broad
spatial scales in the face of imperfect information and have been
applied extensively in fisheries research. In this study, we apply a
simulation approach to understanding potential biases in biolog-
ical status assessments of Pacific salmon introduced by assump-
tions in the analysis of spawner and recruitment data.

Assessing biological status of Pacific salmon
Pacific salmon (Oncorhynchus spp.) are a highly exploited group

of species, and many populations have experienced declines in
recent decades due to overfishing, changing ocean conditions,
and freshwater habitat degradation (e.g., COSEWIC 2016, 2017;
Brown et al. 2019). Pacific salmon are anadromous and semelp-
arous, returning from ocean rearing grounds to spawn in fresh
water before dying, and are typically vulnerable to fisheries upon
their return to coastal waters. The data required to assess biolog-
ical status of Pacific salmon can include annual estimates of the
number of returning adult salmon to individual rivers, fisheries
catch or harvest rates, and the age composition of returning
salmon. Often, these data are incomplete and require imputation.
“Run reconstructions” have been undertaken for many salmon
stocks to expand spawner abundances to account for unmoni-
tored streams and estimate the abundance of recruits to coastal
fisheries prior to spawning (i.e., recruitment; Cave and Gazey
1994; English et al. 2007, 2016, 2018). The exact procedure under-
taken depends on the life-history traits and available data for each
population and can include complexities such as spatial and tem-
poral variability in returns among spawning populations. Status
assessments that rely on run reconstructions have been adopted
by, for example, local management organisations, the Marine
Stewardship Council (www.msc.org), the Pacific Salmon Treaty
(PSC 2019), COSEWIC (e.g., COSEWIC 2016, 2017), and the Pacific
Salmon Foundation (Connors et al. 2013, 2018, 2019).

Fisheries and Oceans Canada (DFO) also relies on run recon-
structions when assessing the biological status of conservation
units (CUs) — groups of wild salmon that, if lost, are unlikely to
recolonize within an acceptable time frame — under Canada’s
Wild Salmon Policy (WSP; DFO 2005). Under the WSP’s biological
status assessment framework, quantifiable metrics are calculated
from available data and compared against biological reference
points, or “benchmarks”, to arrive at a status outcome of red,
amber, or green (DFO 2005; Fig. 1). A red status indicates that a CU
has low spawner abundance and (or) reduced spatial distribution,
and management intervention is required to avoid extirpation. A
green status indicates that the CU is able to sustain maximum
annual catch under existing environmental conditions. The spe-
cific benchmarks delineating these status zones must consider
uncertainties in metrics and the unique biological characteristics
(e.g., age composition) of the CU being assessed. Indeed, in their
“integrated status assessments”, DFO engages experts to consider
the unique context of each CU and the quality and quantity of data
that may be used to estimate status (e.g., DFO 2015, 2016, 2018a).
However, the required resources and time (typically 1–3 years)
have meant that integrated status assessments have been com-
pleted for only 9% of CUs since the WSP was released nearly
15 years ago, and reports are often 2–4 years out of date when they
are released (DFO 2019).

Data-driven approaches focused on calculating quantitative
metrics without expert elicitation can provide timely status up-
dates that are standardized and comparable across CUs using
transparent and repeatable methodology. For example, the Pacific
Salmon Foundation has undertaken a widespread effort to apply a
data-driven approach to assessing spawner abundance under the
WSP framework, with results for the north and central coast
openly available through their Pacific Salmon Explorer (PSE) —
www.salmonexplorer.ca (Connors et al. 2013, 2018, 2019) — and
are currently expanding their assessments to all remaining
salmon CUs in British Columbia (BC). Despite the benefits of this
approach, multiple assumptions in run reconstructions (Table 1)
mean that potential biases can compound, and the impact on
status outcomes needs to be quantified to lend confidence and
credibility to data-driven assessments.

In this study, we quantified bias in biological status outcomes
for Pacific salmon from data-driven assessments due to assump-
tions and uncertainty in run reconstructions (Table 1). We used a
simulation approach that allowed us to explore how bias changed
under different biological and management conditions. As a case
study, we tailored our simulation model to represent a generic

Fig. 1. Illustration of Canada’s Wild Salmon Policy (WSP) status assessment framework (adapted from Holt et al. 2009). We focused on the
geometric mean spawner abundance (metric, blue) under the spawner abundance indicator. This metric was assessed against two types of
benchmarks: spawner–recruitment (SR) and percentile (see Fig. 2). Faded boxes represent other types of metrics and indicators that may be
included in integrated status assessments but were beyond the scope of what we considered. [Colour online.]
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chum salmon (Oncorhynchus keta) CU from the central coast of BC
because these CUs have recently been assessed using a data-driven
approach (Connors et al. 2018) and have a relatively simple run-
reconstruction model that does not include run timing. Further-
more, there are conservation concerns for both north and central
coast chum salmon, which have not recovered despite major re-
ductions in harvest rates over the past two decades (DFO 2018b).
Thus, central coast chum salmon offer a useful case study for an
initial investigation of basic assumptions underlying biological
status assessments. However, our simulation model is flexible
enough to accommodate different species and life-history traits
(e.g., age-at-return, density dependence) of Pacific salmon. We fur-
ther explore a broad range of biological (e.g., trends in capacity,
interannual variability in age-at-return) and management (e.g.,
declining monitoring coverage, bias in observed spawners and
catch) scenarios to yield more general insight into the circum-
stances under which assumptions may bias status assessments.

Methods

Benchmark calculations and assumptions
Multiple metrics of biological status have been proposed under

the WSP that cover four broad classes of indicators: current
spawner abundance, trends in abundance over time, spatial dis-
tribution of spawners, and fishing mortality (Holt et al. 2009). We

focused our analysis only on the current spawner abundance met-
ric and considered two types of benchmarks (Figs. 1, 2) that have
been frequently applied to determine biological status of Pacific
salmon CUs, including in the PSE (Connors et al. 2013, 2018, 2019).
The first type of benchmark is associated with maximum sustain-
able yield (MSY), derived from a spawner–recruitment (SR) rela-
tionship (Fig. 2b). An upper SR benchmark of 80% of the spawner
abundance that is projected to maintain long-term maximum
yield, or 80% SMSY, has been recommended by Holt et al. (2009,
2018) and will be applied to future assessments in the PSE (previ-
ous PSE assessments have applied SMSY; Connors et al. 2018, 2019).
SMSY can be calculated explicitly from the productivity and
density-dependence parameters of the Ricker SR relationship
(Scheuerell 2016). Multiple lower benchmarks have been sug-
gested (Holt et al. 2009, 2018), and we used a lower benchmark of
the spawner abundance that leads to SMSY in one generation in the
absence of fishing mortality, called SGEN (Korman and English
2013; DFO 2015), as applied in the PSE. These benchmarks delin-
eate the green, amber, and red status zones: if the geometric mean
spawner abundance over the most recent generation (SAVG) is
above the upper benchmark of 80% SMSY, then the CU is assigned
a green status; if SAVG is between 80% SMSY and SGEN, then the CU is
assigned an amber status; and if SAVG is less than SGEN, then the CU
is assigned a red status.

Table 1. Summary of common steps in run reconstructions (Fig. 2) and associated assumptions and potential biases that we investigated.

Step in run
reconstruction Description Assumption Potential biases

Associated factor(s)
investigated in this study

(1) Expansion
Factor I

Infills observed spawner
abundances in indicator
streams to account for
indicator streams that
were not monitored in a
given year.

The contribution of each
indicator-stream
population to total
escapement is
constant within a
decade.

May be biased if contributions are changing
due to, for example, changes in capacity
or productivity that differ among
populations. Under low monitoring
coverage, the magnitude of expansion is
greater, and thus we expect that any
potential bias would be larger.

¡Diverging capacities of
populations through
time

¡Declining monitoring
coverage

(2) Expansion
Factor II

Expands spawner abundances
from step (1) to include
spawners in nonindicator-
streams.

The contribution of
nonindicator-stream
populations to total
escapement is
constant within a
decade.

May be biased if contributions are changing
due to, for example, changes in capacity
or productivity that differ between
populations in indicator and
nonindicator streams.

¡Diverging capacities of
populations through
time

¡Declining monitoring
coverage

¡No. of streams and
proportion that are
indicators

(3) Expansion
Factor III

Expands spawner abundances
from step (2) to account for
observer efficiency and for
populations that are never
monitored, yielding the
estimated total spawner
abundance for the CU.

The proportion of total
spawner abundance
estimated in step (2) is
known, constant over
time, and independent
of spawner
abundance.

May be biased if observer efficiency is not
known or poorly estimated, if survey
methods change over time (e.g., from a
weir to overhead counts), or if
observation bias varies with total
spawner abundance.

¡Bias in the observation
of spawners (under the
same value of
Expansion Factor III)

¡Declining monitoring
coverage

(4) Catch
assignment
to CUs

Catch from PFMAs is
assigned to CUs in
proportion to the spawner
abundance for that CU.

Fish caught in an PFMA
were destined to
spawn in streams that
flow into that PFMA.

Over- or underestimation of catch due to
different run timing among CUs that flow
into the same PFMA (if information on
run timing is uncertain, unavailable, or
not incorporated into run-reconstruction
models).

¡Bias in the observation
of catch

(5) Calculating
recruitment
using age-at-
return

The total return to the CU is
assigned to brood years
based on the proportion of
fish returning at different
ages.

Often, annual age-at-
return data are not
available for each CU,
and so age-at-return is
assumed to be
constant over time,
using the average of
available data.

Variability in brood year recruitment will
be underestimated if there is high
interannual variability, or temporal
changes, in age-at-return that is not
accounted for in assessments.

¡Interannual variability
in age-at-return

Note: CU, conservation unit; PFMA, Pacific Fisheries Management Area.
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The second type of benchmarks we considered were percentile
benchmarks (Clark et al. 2014; Holt and Folkes 2015; Holt et al.
2018), also called historic spawners benchmarks (e.g., Connors
et al. 2018). The upper and lower benchmarks are the 50th and
25th percentiles of historical spawner abundance, respectively
(Fig. 2a). Calculating these benchmarks requires fewer data, as the
SR relationship need not be estimated (i.e., age-at-return and har-
vest data are not required). As such, the percentile benchmarks
can be applied to data-limited CUs for which spawner data are
patchy or age and harvest data are not available.

We focused on a basic run-reconstruction model and associated
assumptions that are commonly made when assessing spawner
abundance against the benchmarks above (Fig. 2c; Table 1). At a
minimum, to apply percentile benchmarks, a time series of total
spawner abundance at the CU scale is required. CUs are typically
composed of multiple spawning populations that may or may not
be monitored in any given year. Spawning populations in individ-
ual streams (henceforth “populations”) may exhibit unique dy-
namics, as their productivity is (in part) limited by density-
dependent processes in fresh water. A simple sum of the observed
spawner abundance within a CU may be misleading if the same
populations are not monitored consistently. On BC’s north and
central coasts, monitored populations have been designated as
either “indicator streams” or “nonindicator streams”, with indi-
cator streams being prioritized for monitoring and thus having
more continuous and reliable spawner estimates (English 2016). In
addition, there may be populations that have never been moni-

tored and for which spawner abundance is unknown. To recon-
struct spawner abundance to the CU, three “expansion factors”
have been applied to account for (i) spawners returning to indica-
tor streams that are not monitored in a given year, (ii) spawners
returning to nonindicator streams, and (iii) observation efficiency
and populations that are never monitored (Table 1).

The application of SR benchmarks also requires time series of
the total number of salmon returning to the CU to reconstruct
recruitment, including those caught in fisheries and those that
make it to spawn but are not counted. The number of returning
salmon in a CU that are caught in fisheries is estimated based
on the catch statistics for Pacific Fisheries Management Areas
(PFMAs) adjacent to the geographic location of the CU (Fig. 3). It is
assumed that salmon caught in a PFMA were destined to spawn in
streams that empty into that PFMA, although there is the poten-
tial for bias in that fish may be caught while migrating through
the PFMA, or fish destined for streams in the focal PFMA may be
caught in other PFMAs. Furthermore, in most cases, there is not a
perfect spatial correspondence between PFMAs and CUs (Fig. 3).
Streams in multiple CUs may flow into a single PFMA, which is
common for small CUs, such as with sockeye salmon (Oncorhynchus
nerka), which spawn in individual lakes, each of which is associ-
ated with a unique CU (Holtby and Ciruna 2007). In the simplest
case, the catch from that PFMA may be assigned to CUs based on
the relative spawner abundance to each CU. However, differences
in run timing among CUs may complicate the assignment of catch
and necessitate more complex run-reconstruction models. A sin-

Fig. 2. (a) Benchmarks are the 50th (S50; horizontal green line) and 25th (S25; horizontal red line) percentiles of historical spawner abundance
(points). The current spawner abundance is calculated as the geometric mean spawner abundance over the most recent generation (4 years,
blue points and line). (b) Recruitment benchmarks are based on the shape of the Ricker relationship (solid line) fit to data on spawner
abundance (x axis) and corresponding recruitment (catch + escapement, y axis). The upper and lower benchmarks are 80% SMSY (green) and
SGEN (red), respectively. SGEN is defined as the spawner abundance that leads to SMSY (grey) in one generation in the absence of fishing
mortality. Under both types of benchmarks, the current spawner abundance in the example shown is above the upper benchmark, and this
conservation unit (CU) would be assessed as “green”. (c) The calculation of benchmarks requires run reconstruction to expand observed
spawners abundances, assign catch to CUs, and calculate recruitment (Table 1). [Colour online.]
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gle CU may also be composed of populations that are caught in
multiple PFMAs, particularly for species with large CUs such as
pink (Oncorhynchus gorbuscha) and chum salmon, whose geo-
graphic boundary often spans hundreds of kilometres and in-
cludes dozens of spawning populations (Fig. 3). In these cases, an
average harvest rate across PFMAs may be applied that may not
reflect the variable harvest rates experienced by the different pop-
ulations within these large CUs. The impact of observation bias in
the catch assigned to each CU on status assessments is unknown
and is a focal aspect of this study (see section on Sensitivity anal-
yses, below).

Finally, to calculate recruitment for a given cohort of spawners,
assumptions about the age-at-return of spawners in any given year
are required (except in the case of pink salmon, which have a fixed
2-year generation time). The total return in a given year is as-
signed to brood years based on the proportion of fish that return
at a certain age, but these proportions are often not estimated
every year. For chum salmon on the central coast, the distribution
of age-at-return is assumed to be constant over time and is based
on the average of available data (English et al. 2018). In this case,
interannual variability in age-at-return may introduce uncer-
tainty into the calculation of brood-year recruitment and bias
resulting assessments of status (Zabel and Levin 2002).

Simulation model
We developed and applied a stochastic simulation model of

salmon population dynamics that allows control over various bi-
ological and management factors that may influence the accuracy
of status assessments. Our approach built on previous studies that
evaluated uncertainties in fisheries management (e.g., Holt and
Peterman 2008) and other factors influencing the performance of
metrics and benchmarks under Canada’s WSP (e.g., Peacock and
Holt 2012; Holt and Folkes 2015; Holt et al. 2016, 2018). The simu-
lation model is composed of submodels for salmon population
dynamics, observation of spawners, assessment, harvest, and per-
formance (Fig. 4). In this subsection, we describe the general equa-
tions for the simulation model, with details of parameterization
in the following subsection. The code for the model and results
is available at https://github.com/sjpeacock/run-reconst-sim_PSF.
Version 1.0, used in this paper, is archived at https://zenodo.org/
record/3971276 and was implemented in R version 4.0.2.

Population dynamics
We simulated the dynamics of multiple spawning populations

returning to indicator or nonindicator streams within a single
hypothetical CU. Although some CUs consist of just a single
spawning population (e.g., lake-type sockeye salmon), many CUs
(especially pink and chum salmon) span thousands of square ki-
lometres (Fig. 3) and can include multiple spawning populations

Fig. 3. Our study focused on central coast chum salmon conservation units (CUs) (green; different CUs shaded differently in central coast
inset), which are relatively large and do not correspond to the Pacific Fishery Management Areas (PFMAs; white or light blue shaded regions)
for which catch is reported. One factor we investigated was how bias in assigning catch to CUs, resulting in under- or overestimation of catch,
affects estimates of biological status. Map produced using PBSmapping (Schnute et al. 2015) with data from Martin Huang (DFO, personal communication).
[Colour online.]
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whose dynamics may differ due to local adaptation and finite
rearing and spawning habitats.

We based our simulations on the life history of chum salmon,
which generally return to spawn as 3-, 4-, or 5-year-olds. The num-
ber of salmon returning in return year t and population j, Rt,j, was
calculated as

(1) Rt,j � Rt�3,j
′ pt�3,3 � Rt�4,j

′ pt�4,4 � Rt�5,j
′ pt�5,5

where py,g is the proportion of recruits from brood year y return-
ing at age g. Throughout this model description, we use R to
denote returns, or catch plus escapement of fish returning in a
year, and R= to denote recruitment, or the total number of off-
spring from a brood year that survive to maturity.

We assumed that the annual proportion of recruits returning at
a given age was the same among populations, but incorporated
interannual variability in age-at-maturity by allowing the propor-
tion of recruits that return at age g to vary among brood years y:

(2) py,g �
p̄g exp(�̄ �y,g)

�G�3

5
p̄G exp(�̄ �y,G)

where p̄g is the average proportion of individuals maturing as
g-year-olds, �̄ is a parameter that controls interannual variability
in proportions of fish returning at each age (refer to online Sup-
plementary material, Fig. S41), and �y,g are standard normal devi-
ates (Schnute and Richards 1995).

The number of salmon that escape the fishery and return to
spawn was calculated as

(3) St,j � (1 � ht,j) Rt,j

where ht,j is the realized harvest rate for population j in year t. We
incorporated outcome uncertainty (i.e., deviations from the target
harvest rates) by drawing the realized harvest rates for each year
and population from a Beta distribution with mean equal to a
target harvest rate, ht

′ , and variance �h
2 (Holt and Peterman 2008).

We considered two different scenarios for determining the tar-
get harvest rate (Fig. 5). First, we considered a simple, abundance-
based harvest control rule (HCR) where ht

′ increased with the total
return to the CU from a minimum of 0.05 (to account for bycatch
and unavoidable mortality and also avoid problems associated
with low-target harvest ruless when incorporating Beta-distributed
outcome uncertainty) up to an asymptote, hMAX (Holt and Peterman
2008):

(4) ht
′ � max�hMAX�1 � exp�m�

j

Rt,j��, 0.05�
where m is the shape parameter of the HCR. The low harvest rates
at low returns under this HCR prevented the CU from declining to
red status in simulations, and so as to broaden our results to
include CUs with true red status, we also considered a constant
high-target harvest rate of ht

′ = 0.60 regardless of the total return
(Fig. 5). In the online Supplementary material1, we present an
intermediate scenario with a constant moderate target harvest of
ht

′ = 0.42.
Each population in our model was harvested in proportion to its

abundance, such that the true total catch of fish that would have
returned to streams within the CU was calculated as

(5) Ct � �
j

ht,jRt,j

Although realized harvest rates differed among populations, we
did not incorporate persistent biases in realized harvest rates

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0432.

Fig. 4. Schematic of the simulation model composed of submodels for population dynamics (including harvest), observation, assessment, and
performance (adapted from Holt et al. 2016). [Colour online.]
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among populations and thus assumed that all populations were
equally vulnerable to the fishery. The extent to which this as-
sumption is violated will depend on the size of the CU, the num-
ber of populations within it, the magnitude of variation in run
timing and body size among populations, and where fisheries are
prosecuted. Any such biases among populations within a CU
would likely be small because run timing was a consideration
when delineating CUs (Holtby and Ciruna 2007). However, biases
among CUs may be significant, and we investigate this by varying
the observation bias in the total catch to the CU (see section on
Sensitivity analyses, below).

Finally, we assumed the SR dynamics followed a Ricker relation-
ship (Ricker 1954) yielding the number of recruits from brood
year y and population j:

(6) Ry,j
′ � Sy,j exp(aj � by,jSy,j � �y,j)

where aj is the loge recruits per spawner at low spawner abun-
dance (i.e., productivity), by,j is the density-dependence parameter
(which we allowed to change linearly through time; see below),
and �y,j are the recruitment deviates applied for year y and popu-
lation j (eq. 7).

We allowed productivity to differ among populations, where aj
was drawn from a truncated normal distribution with mean ā and
variance �a

2, with a lower limit of aj = 0.4 because SR benchmarks
are not calculable for very low productivity (Holt and Ogden 2013;
Holt et al. 2018). For central coast chum salmon, we found only 1%
of spawning populations (2/181) had aj < 0.4 (see online Supple-
ment1). A linear change in the density-dependence parameter was
simulated for some populations as a decline in the capacity of the
freshwater habitat (i.e., SMAX,y,j = 1/by,j, or the spawner abundance
that leads to maximum recruitment). This decline in capacities
captured the potential consequences of cumulative stressors
to freshwater habitat among watersheds on the central coast
(Connors et al. 2018). For all populations, the initial capacity
SMAX,1,j was drawn from a lognormal distribution whose mean and
standard deviation differed for populations in indicator versus
nonindicator streams, as indicator streams tend to be larger sys-
tems (English 2016; see section on Parameterization below). The
productivity and density-dependence parameters were drawn in-
dependently for each Monte Carlo (MC) iteration of the model.

We incorporated temporal autocorrelation in recruitment de-
viates:

(7) �y,j � 	 �y�1,j � �
	1 � 	2
y,j

where 	 is the temporal autocorrelation coefficient, �
 is the
standard deviation in recruitment deviates without temporal auto-
correlation (Ricker 1975; Holt and Bradford 2011), and 
y,i is a multi-
variate normal random variable with mean zero and variance–
covariance matrix:

(8) �j×j � 

�


2 � �

2 … � �


2

� �

2 �


2 … � �

2

É É Ì É

� �

2 � �


2 … �

2
�

j×j

Here, � is the correlation in recruitment deviates among popula-
tions.

We simulated the “true” population dynamics over 50 years,
after an initialization period of 7 years, to seed eq. 6 given the
variable age-at-return of chum salmon. For each year in this ini-
tialization, we assumed that the number of spawners was equal to
20% of SMAX,1,j. For the first year of the initialization, we set �y�1,j
from eq. 7 to zero.

Observation submodel
In the observation submodel, we incorporated both incomplete

monitoring coverage of streams and imperfect observation of
spawners in streams that were monitored. In any given year, pop-
ulation j was observed with probability �t,j. We included a linear
decline in monitoring coverage (i.e., the probability of a popula-
tion being observed) over time based on observations of declining
monitoring coverage on the north and central coasts of BC (Price
et al. 2008, 2017; English 2016). We calculated the annual proba-
bility of being monitored separately for indicator and nonindica-
tor streams based on observations that monitoring coverage of
nonindicator streams is generally lower and has declined more
severely than coverage of indicator streams (English 2016). See
section on Parameterization below for further details.

Spawner abundances were “observed” with lognormal error:

(9) Ŝt,j � �NA if zt,j � 0
St,j exp(t,j) if zt,j � 1

where zt,j � Bernoulli (�t,j), t,j � N̄ � �
2/2, ��, ̄ is the mean

observation error, and � is the standard deviation in observation
error of spawner abundances. Thus, this combines both the prob-
ability of a population being monitored and the distribution of
observation errors around true spawner abundances if moni-
tored. The mean observation error is corrected by ��

2/2 so that
the arithmetic mean observation bias is exp̄�. We included a
negative bias in the observation of spawners (̄ ≤ 0) such that the
observed spawner abundance is on average lower than the true
spawner abundance. In general, it is challenging to enumerate
spawners in all reaches of a stream and in all streams within a CU.
The reported spawner abundance is considered an underestimate
of the total spawners in a CU, which motivates the application of
Expansion Factor III for observer (in)efficiency when performing
run reconstructions (Table 1). The calculation of Expansion Factor
I required that we impose the constraint that at least one indica-
tor stream was monitored each year, so if zt,j = 0 for all indicator
streams in a year, we randomly selected one indicator stream to
be monitored.

The catch to the entire CU in return year t was observed with
lognormal error:

(10) Ĉt � Ct exp(�t)

where �t � N�̄ � ��
2/2, ���, �� is the standard deviation in catch

error, and �̄ is a bias in catch (corrected by ���
2/2 as for observed

Fig. 5. The two target harvest rate cases we simulated were (i) a
simple harvest control rule (eq. 4; solid line) with parameters
estimated from historical harvest rates and total return from five
central coast chum CUs (grey points) and (ii) a constant high target
harvest rate of ht

′ � 0.6 (dotted line).
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spawners above). We assumed a default value of �̄ = 0, but in
sensitivity analyses we varied this parameter to simulate scenar-
ios in which fish are caught from other CUs or fish from the focal
CU were caught in other PFMAs.

Previous models (e.g., Holt et al. 2018) have included error in the
“estimated age-at-return” separately for each return year. For cen-
tral coast chum salmon, annual age-at-return data are rarely sam-
pled comprehensively, so the same average is generally applied
across all years (Peacock et al. 2014; English et al. 2018). Therefore,
for each year in an MC trial we applied the same estimated pro-
portion of the return that was age g, p̂g, which was drawn inde-
pendently for each MC trial using eq. 2 with observation error, �̄r
(Appendix A, Table A1).

Assessment submodel
As described above, the minimum requirement to calculate

benchmarks and assess population status using percentile bench-
marks is a time series of spawner abundance to the CU. For SR
benchmarks, harvest rates and age-at-return must also be esti-
mated to calculate recruitment. The basic procedure of these run
reconstructions is outlined in Table 1 and begins by expanding
observations of spawners to indicator streams to the total
spawner abundance to the CU by applying three expansion fac-
tors. The equations and criteria governing these expansion factors
are detailed in the online Supplement1 and in English et al. (2012,
2016, 2018). Briefly, Expansion Factor I (Ft,d

′ ) imputes missing
spawner abundances for populations in unmonitored indicator
streams and is calculated for each year t within a decade d of the
spawner time series. It relies on the decadal contribution of each
indicator-stream population to the total escapement to all indica-
tor streams (English et al. 2016). Expansion Factor II (Fd

′′) expands
observations of spawners from indicator streams to include pop-
ulations in nonindicator streams that are less frequently moni-
tored and is the same for each year within a decade d. Expansion
Factor II is calculated as the average proportion of total monitored
spawners (in indicator and nonindicator streams) that are in non-
indicator streams for that decade. For decades with insufficient
information to calculate either of these expansion factors, for
example due to declining monitoring coverage, a reference de-
cade may be used. Expansion Factor III (F�) is determined by the
regional DFO staff familiar with the escapement monitoring tech-
niques used in each statistical area and is assumed to be constant
through time (English et al. 2018). In our model, we assumed that
all populations were at least partially monitored and that Expan-
sion Factor III accounted for observation (in)efficiency, but in re-
ality, Expansion Factor III may also account for populations in
unmonitored streams.

The observed number of salmon returning in year t is the sum
of observed catch and expanded escapement to the CU:

(11) R̂t � Ĉt � Ft,d
′ Fd

′′F ′′′�
j�I

Ŝt,j

where the summation includes observed spawner abundance to
the I indicator streams only, with the nonindicator streams being
accounted for through Expansion Factor II, Fd

′′.
We do not explicitly account for en route or prespawning mortal-

ity of fish that escaped the fishery and assume that prespawning
mortality is relatively small and accounted for in the productivity of
the population through the Ricker SR dynamics. Observed recruit-
ment for brood year y is calculated as the sum of ages 3, 4, and 5 fish
returning in years y + 3, y + 4, and y + 5, respectively:

(12) R̂y
′ � R̂y�3p̂3 � R̂y�4p̂4 � R̂y�5p̂5

yielding the “reconstructed” spawner–recruit pairs for brood year y.

To calculate estimated SR benchmarks, we fit a linearized
Ricker model to the observed data at the aggregate CU level. The
estimated productivity and density-dependence parameters were
then used to calculate upper and lower SR benchmarks (80% of
SMSY and SGEN) for the CU.

Performance submodel
For each MC simulation, we estimated status using both SR and

percentile benchmarks calculated from the observed spawner–
recruit pairs for the CU, including observation biases and incom-
plete monitoring coverage. Estimated status under both types of
benchmarks was compared with the true status, which was calcu-
lated by comparing the current true spawner abundance (without
observation error) against the upper and lower SR benchmarks
(80% of SMSY and SGEN) from the underlying SR parameters. This
meant that we evaluated estimates of percentile (and SR) bench-
marks against the true underlying benchmarks derived from
“true” SR parameters. Because we simulated the true dynamics at
the scale of spawning populations and there was no “true” CU-
level value for the Ricker parameters, calculating the true SMSY

(and thus the SR benchmarks) at the CU level was not straightfor-
ward. We chose to calculate the true SR benchmarks for each
population from the underlying Ricker parameters for that simu-
lation and then summed the benchmarks across all populations
to yield the “true” CU-level benchmarks. Although this CU-level
benchmark will underestimate the level required to maintain all
component populations above their individual benchmarks in
any given year, the objective of the WSP is to maintain the overall
CU, and populations within CUs are assumed be recolonizable
within reasonable time frames (DFO 2005). When declines in ca-
pacity were included in the simulation, we calculated true status
from the initial capacity parameters before the decline. Although
this may have increased the chance that estimated status was
lower than true status (increasing the rate of pessimistic misclas-
sifications), we took this approach to avoid a shifting baseline in
benchmarks.

Performance was evaluated in two ways that capture the differ-
ence between estimated and true status: (i) the proportion of MC
simulations for which status was correctly assessed as green, am-
ber, or red and the proportion of simulations for which status was
either underestimated (pessimistic) or overestimated (optimistic)
and (ii) the percent relative bias of observed average spawner
abundance (SAVG) and of the four benchmarks (SGEN, 80% SMSY, S25,
S50) compared with their true values for each MC simulation.

For each parameterization investigated (see below), we ran 4000 MC
trials, which was sufficient to ensure the mean percent error in
performance measures was <3% (Fig. S31).

Parameterization
Some of the parameters in our simulation model were un-

known or unknowable, in which case we followed assumptions
made for southern BC chum salmon by Holt et al. (2018). Other
parameters were available specifically for central coast chum
salmon or could be estimated from available data; details of
parameter estimation are given in the online Supplement1. As
mentioned above, to understand the assessment biases under
different true statuses, we considered two cases: (i) high produc-
tivity and a conservative HCR, which we refer to as the “base case”
because it is most representative of central coast chum salmon,
and (ii) low productivity and a constant high target harvest rate,
which represented a CU at high risk of extirpation. In the online
Supplement1, we also present results from a third case intermedi-
ate between these two with low productivity and a constant mod-
erate harvest rate. Unless otherwise indicated in the sensitivity
analysis (below), parameters defaulted to the values described
here and listed in Appendix A, Table A1.

The mean proportion of adults maturing at ages 3, 4, and 5 in
eq. 2 was held constant for all simulations at 0.23, 0.64, and 0.13,
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respectively, based on the average age-at-return applied in run
reconstructions of central coast chum (Challenger et al. 2018;
English et al. 2018). For the base case, we estimated the parameters
in the HCR (Fig. 5) from harvest rates and total return sizes for five
central coast chum CUs (English et al. 2018; Salmon Watersheds
Program – Pacific Salmon Foundation 2019). The high harvest case
is consistent with the upper bound in harvest rates chosen in
other studies (Holt et al. 2018) and represents the upper threshold
in harvest rates for central coast chum (Fig. 5).

To estimate the SR parameters for spawning populations (eq. 6),
we fit a linearized Ricker model to population-level spawner–
recruit pairs from nine central coast chum CUs with individual
productivity and density-dependence parameters for each popu-
lation (Fig. S51). Note that this approach may lead to biased SR
parameters, as we did not account for temporal autocorrelation
and errors in variables when analysing the data, but they none-
theless provide a useful starting point for our simulation study.
From the model fits, we calculated (i) mean and variance in pro-
ductivity among populations, (ii) mean and variance in the initial
capacity (i.e., 1/SMAX) for indicator and nonindicator streams,
(iii) the residual variance within populations, (iv) the average
correlation in residuals between populations, and (v) the tempo-
ral autocorrelation in residuals within populations. The mean
population-level productivity was ā = 1.40 (Fig. S51), which we
applied in our base case. For the low-productivity case, we chose
ā = 0.56, which was the 2.5th percentile of population-level pro-
ductivity estimates (Fig. S51). The residual variance within popu-
lations was used as an estimate of the variance in recruitment
deviations (�


2) in simulations, but was likely an overestimate as
we did not account for observation error separately when fitting
the Ricker model. Thus, we explore the results under a range of
values for �
 in the online Supplemental Results1. The correlation
in residuals among populations was estimated at � = 0.46, but we
also investigated lower (� = 0) and higher (� = 0.9) levels of syn-
chrony in the online Supplement1.

As the default case, we considered a decline in the capacity of
streams (i.e., one over the density-dependence parameter of the
Ricker model) that reflected observed declines in freshwater hab-
itat (Office of the Auditor General of Canada 2004). Within the
central coast chum CUs, 29% of watersheds are considered to be at
moderate risk, and 21% at high risk, of cumulative habitat pres-
sures over the last 60 years from stressors such as logging, water
licenses for withdrawal of water from streams, and stream cross-
ings (Connors et al. 2018). We hypothesized that declines in capac-
ity that differ among spawning populations may affect the
accuracy of Expansion Factors I and II, particularly in combina-
tion with declining monitoring coverage (Price et al. 2017). We
incorporated a linear decline in capacity (i.e., SMAX = 1/b) over the
50-year time series of between 25% and 50%, representing a mod-
erate decline, for 29% of populations (the percentage of central
coast chum watersheds deemed to be at moderate risk of cumu-
lative habitat pressures by Connors et al. 2018) and a linear decline
between 50% and 75%, representing severe decline, for 21% of
populations (the percentage deemed to be at high risk). The exact
percent decline for each population was randomly drawn from a
uniform distribution within the above range for each MC simula-
tion. The remaining 50% of populations had stable capacity over
the 50-year simulation. In a sensitivity analysis, we investigated
four additional scenarios for declining capacity (Table 2).

In the observation submodel, we chose the bias in the observa-
tion of spawners to match Expansion Factor III, which corrects for
observer efficiency, with a range of values explored in a sensitivity
analysis (below). Because Expansion Factor III is simply a constant
multiplier applied to spawner abundance, it does not affect esti-
mated status by the percentile benchmarks. However, Expansion
Factor III affects estimated harvest rates and recruitment, and
therefore bias in this expansion factor was expected to lead to bias
in estimated status under the SR benchmarks. The value of Expan-
sion Factor III applied in past status assessments has been con-
stant at F� = 1.5 for all central coast chum CUs (English et al. 2016),

Table 2. Summary of factors that we investigated in sensitivity analyses to determine their impact on bias in status
assessments.

Factor Scenario Details

No. of populations and
proportion that spawn
in indicator streams

Central coast chum* 35 populations, 15 (43%) indicator streams
Small–low 10 populations, 3 (30%) indicator streams
Small–high 10 populations, 8 (80%) indicator streams
Large–low 140 populations, 42 (30%) indicator streams
Large–high 140 populations, 119 (85%) indicator streams

Monitoring coverage Constant Indicator: historical 76% with no change
Nonindicator: historical 72% with no change

Observed decline* Indicator: 76% with a change of –5% over the last 26 years
Nonindicator: 72% with a change of –67% over the last 26 years

Declines in capacity† 0% All spawning populations have stable capacities
25% 25% of populations severe and 25% moderate declines and 50%

stable capacity
50% 50% of populations severe and 50% moderate declines in capacity
100% 100% of populations display severe declines in capacity

Bias in observation of
spawners

— Range in bias from ̄ = –1.6, which would correspond to the
maximum value of Expansion Factor III that has been applied
(F ′′′ = 5.0; English et al. 2018) to ̄ = 0 in increments of 0.2
(default value ̄ = –0.4, corresponding to F ′′′ = 1.5)

Bias in observation of
catch

— Range in bias from �̄ = –1.0 (63% underestimation) to �̄ = 1.0 (271%
overestimation) in increments of 0.2 (default value �̄ = 0).

Interannual variability in
age-at-return

— Range in variability from �̄ = 0.2 to 1.6 in increments of 0.2
(default value �̄ = 0.8; Fig. S41)

*Default values.
†The default values for decline in capacity did not correspond exactly to the scenarios considered in the sensitivity analyses, but were

based on habitat assessments for the central coast (21% of populations having severe declines and 29% of populations having moderate
declines; Connors et al. 2018).
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and so we applied a default value of ̄ = loge(1/1.5) = –0.4. The
majority of central coast chum streams are surveyed visually by
ground (fish counts or other sampling) with some aerial (fish
counts) or boat (fish counts or other sampling) surveys (English
2016), similar to southern BC chum streams (Holt et al. 2018). We
assumed � = 0.5 following Holt et al. (2018), which is the maxi-
mum estimated uncertainty for visually surveyed spawners (Cousens
et al. 1982; Szerlong and Rundio 2008).

We incorporated a linear decline over the last 27 years of simu-
lations in the proportion of indicator and nonindicator streams
monitored each year from 0.76 and 0.72, respectively, to 0.72 and
0.05 based on English (2016). These declines are representative of
overall declines in monitoring across species, but we also consider
the trends specific to chum salmon in the online Supplement
(Fig. S61).

We assumed no bias in the observation of catch (�̄ = 0) by
default, but consider a range of bias in sensitivity analyses (see
next section). The standard deviation in the observation error of
catch accounts for differences between observed (i.e., reported)
and actual catch due to uncertainties with mixed-stock fisheries
and in reporting and estimation of recreational fisheries and sub-
sistence use. We set this to �� = 0.2 (Holt et al. 2018), which is less
than the observation error in spawners.

Sensitivity analyses
We examined the sensitivity of status assessments over a range

of values for several different model parameters that we consid-
ered most likely to affect status assessments due to their influence
on the assumptions in run reconstructions (Tables 1 and 2). We
investigated each of the questions below under both the base case
and low-productivity, high-harvest case described above, with
other parameters at their default values (Table A1) unless other-
wise noted. The specific questions that we addressed were as fol-
lows:

1. How do the number of spawning populations and the propor-
tion designated as indicator streams affect status assessments?
The lower the proportion of streams that are indicators, the
greater the magnitude of Expansion Factor II.

2. How does a decline in monitoring coverage affect status as-
sessments? The fewer indicator streams that are monitored,
the greater the magnitude of Expansion Factor I and the po-
tential uncertainty in expanded spawner abundance. Here, we
consider two scenarios (Table 2; Fig. S61): constant monitoring
coverage at historical proportions among all streams and an
observed decline in coverage starting in the mid-1980s, as has
been observed on the north and central coasts (English 2016;
Fig. S61). In the online Supplement1, we consider two addi-
tional scenarios: observed declines in monitoring specific to
chum salmon streams and a sharp, recent decline in monitor-
ing of indicator streams.

3. How do declines in capacity affect status assessments? The
application of Expansion Factors I and II assumes that the
relative contributions of populations to aggregate abundance
in the CU does not change over time, but declines in capacity
that differ among populations may violate this assumption.

4. How does spawner observation bias affect status assessments,
given that the value of Expansion Factor III is fixed over time
and often is the same among CUs (English et al. 2018)?

5. How does catch observation bias (e.g., over- or underestimat-
ing catch of salmon) affect status assessments? This represents
scenarios where there are errors in estimates of CU propor-
tions in the aggregate catch in a mixed-stock fishery or viola-
tion in the assumption of homogeneous spatial and temporal
distribution of CUs when CU proportions are not monitored in
such fisheries.

6. How does interannual variability in age-at-return affect status
assessments?

We investigated the impact of declines in monitoring coverage
(question 2 above) in combination with declines in capacity of
spawning populations (question 3) in a bivariate sensitivity anal-
ysis.

Results
The different productivity and harvest rate combinations we

considered led to different true CU statuses. Under high produc-
tivity and an abundance-based HCR — the base case correspond-
ing to central coast chum salmon — 86.4% of simulations resulted
in true green status (Figs. 6a, 6b). Conversely, under low produc-
tivity and high harvest rates, 67.0% of simulations resulted in true
red status (Figs. 6c, 6d).

Under the base case when true status was mostly green, misclas-
sifications resulted in estimated status lower than the true status,
meaning assessments were biologically pessimistic (henceforth
referred to as “pessimistic misclassifications”). This was particu-
larly true of the percentile benchmarks, for which 55.2% of simu-
lations resulted in a pessimistic misclassification, with 12.7% of
simulations having misclassified green status as red. Pessimistic
misclassifications were due to positive bias in benchmarks and
not bias in the current spawner abundance (Fig. 7), resulting in
status being underestimated. For productive populations (as in
the base case), most observed spawner abundances tended to be
far above lower benchmarks and closer to equilibrium values. As
a result, lower and upper benchmarks of 25th and 50th percen-
tiles of historical spawner abundance tended to overestimate the
“true” SR-based benchmarks.

When true status was mainly red, under low productivity
and high harvest rates, biologically optimistic misclassifications
(henceforth “optimistic misclassifications”) were more common,
which may be riskier from a conservation and management
standpoint. For example, 44.8% and 43.0% of simulations had an
estimated status higher than true status under the SR and percen-
tile benchmarks, respectively (Figs. 6c, 6d). These more frequent
optimistic misclassifications were due to a negative bias in bench-
marks, in particular the lower SR benchmark of SGEN (Fig. 7a),
likely due to a poor ability to estimate SMSY under low productivity
when spawner abundances tend to cluster near the origin.

Under both types of benchmarks, bias did not decrease when
monitoring coverage was held constant at 100% (Fig. S91), suggest-
ing that the application of Expansion Factors I and II were not
contributing factors.

Sensitivity analyses
The number of spawning populations within the CU and the

proportion of those populations spawning in indicator streams
had little impact on status assessments (Fig. S101). Under the base
case, the relative bias in estimates of SMSY and SGEN were lower in
larger CUs, with half as many pessimistic misclassifications for
larger CUs under the SR benchmarks (43% for 10 populations ver-
sus 22% for 140 populations with 30% indicator streams; Fig. S10a1).
This trend was not, however, observed in the low-productivity,
high-harvest case when true status was predominantly red (Fig. S121).

The monitoring-coverage scenarios that we considered, repre-
sentative of observed declines in monitoring on the north and
central coast, had no effect on status outcomes or the relative bias
in benchmarks. This was true in the base case (Figs. 8 and S131) and
under low productivity (Figs. S14–S151). Even under severe de-
clines in capacity of 50% to 75% for all spawning populations, our
results suggest that the observed declines in monitoring coverage
on the north and central coasts are unlikely to bias status assess-
ments. This result held regardless of whether the recruitment
deviates among component populations within the CU were not
correlated (� = 0; Fig. S161) or highly correlated (� = 0.9; Fig. S171).

Under the base case, declines in capacity of the CU were associ-
ated with poorer estimated status and an increase in misclassifi-
cation rates (Figs. 8a–8b). Pessimistic misclassifications increased
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because CUs more frequently had a true status of amber but were
misclassified as red. Optimistic misclassifications increased, par-
ticularly under the SR benchmarks (Fig. 8a), because the relative
bias in the current spawner abundance (SAVG) remained un-

changed, but the bias in benchmarks decreased (Figs. 8c–8d). In
the low-productivity, high-harvest case, the results were similar
but with biologically optimistic misclassifications dominating as
status was predominantly amber or red (Fig. S151).

Fig. 6. Estimated status according to the spawner–recruitment (SR) benchmarks (left) and the percentile benchmarks (right) over the true
status for each of two cases: (a–b) high productivity and a harvest control rule (HCR) and (c–d) low productivity and high harvest rates. Grey
hatched cells indicate pessimistic misclassifications, which may lead to overly conservative management actions, and black cells indicate
optimistic misclassifications, which may lead to overly risky management actions. Coloured cells indicate correct classifications for red,
amber, and green zones. [Colour online.]

Fig. 7. Relative bias in spawner–recruitment (SR) benchmarks (a), percentile benchmarks (b), and current spawner abundance (SAVG; black)
(median ± interquartile range among 4000 Monte Carlo (MC) simulations) for high productivity and a harvest control rule (HCR) and the low-
productivity, high-harvest case.
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As the bias in the observation of spawners approached zero
(̄ ¡ 0), misclassifications under the SR benchmarks declined in all
cases, even as the observation bias became less than the Expan-
sion Factor III applied to correct for it (Figs. 9a and S18–S191). The
relative bias in the current spawner abundance was minimized
when the observation bias matched the assumed value of Expan-
sion Factor III (̄ = –0.4 corresponding to F� = 1.5; Figs. 9c–9d).
When observed spawner abundance was biased low (̄ = –1.6), the
relative bias in the upper benchmark of 80% SMSY was higher than
the relative bias in current spawner abundance (SAVG) or the lower
benchmark (SGEN), and thus CUs with a true green status were
more likely to be misclassified as amber. Status outcomes under
the percentile benchmarks were unaffected by changes in obser-
vation bias of spawners (Fig. 9b); the bias in both benchmarks and
current abundance showed similar changes as observation bias
declined (Fig. 9d) such that the resulting status outcome was
unchanged. In the online Supplement1, we also investigated a
change in observation bias halfway through the simulation
(Fig. S201), but a change from the base value of ̄ = –0.4 to ̄ = –1.6,
–0.7, and 0 did not have any impact on status outcomes or biases
in benchmarks (Fig. S211).

Underestimation of catch (i.e., negative values of �̄) resulted in
fewer misclassifications than overestimating catch (Fig. 10 and
S22–S231). As the catch bias increased from �̄ = –1.0 (63% underes-
timation) to �̄ = 1.0 (271% overestimation), the relative bias in the
lower SR benchmark of SGEN declined while the relative bias in the

upper benchmark of 80% SMSY increased (Fig. 10b). This is due to
the errors in variables that occur when catch is underestimated;
productivity and recruitment tend to be underestimated, thus
leading to lower estimates of SMSY and higher estimates of SGEN

(Holt and Folkes 2015). Under the base case, the true status was
green in the majority of simulations, and so the increasing bias in
the upper benchmark dominated the overall status assessments
and led to the increase in pessimistic misclassifications with in-
creasing �̄. In the low-productivity, high-harvest case, true status
was mostly red, and so the increasingly negative bias in SGEN

resulted in more optimistic misclassifications as the observation
bias in catch increased (Fig. S231). In all cases, overestimating
catch by �50% (i.e., �̄ = 0.4) led to a 5%–8% increase in misclassifi-
cation rate (Fig. S241). Although these changes in misclassification
rates may seem small, there is potential for large catch errors in
run reconstructions, especially when multiple CUs overlap with a
single PFMA. Catch does not factor into the calculation of percen-
tile benchmarks, so status under the percentile benchmarks was
unaffected by changing catch bias.

Finally, increasing interannual variability in age-at-maturity re-
sulted in more frequent status misclassifications, but the effect
was relatively small. Under the base case, increasing �̄ from 0.2 to
the default value of 0.8 resulted in an increase in misclassifica-
tions from 27.3% to 30.2%, but very little change in the bias in
benchmarks (Fig. S251). Further increasing the interannual vari-
ability to �̄ = 1.6 led to 34.0% of simulations being misclassified,

Fig. 8. The effect of monitoring coverage (no change and decline; Table 2) and the percentage of spawning populations with severe declines
in capacity (x axis) on performance measures under the base case of high productivity and HCR. (a–b) The proportion of simulations with
correct green, amber, or red status or pessimistic misclassifications (hatched grey) and optimistic misclassifications (black) under the SR
benchmarks (a) and percentile benchmarks (b). (c–d) The percent relative bias (median ± interquartile range among 4000 MC simulations) in
the current spawner abundance (SAVG; black) and lower and upper benchmarks (red and green, respectively) under the SR benchmarks (c) and
the percentile benchmarks (d). See online Supplement1 for results under the low-productivity, high-harvest case. [Colour online.]

Peacock et al. 1915

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

20
9.

12
1.

22
8.

22
1 

on
 0

3/
11

/2
2

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



but this level of interannual variability is high (see Fig. S41 for exam-
ple) compared with data on age-at-return for central coast chum
salmon (Challenger et al. 2018; English et al. 2018). The increase in
misclassifications was smaller under the low-productivity, high-
harvest case (Fig. S251).

Discussion
In this study, we quantified the impact of common assumptions

in run reconstructions (Fig. 2c) on biological status outcomes. In
general, the assumptions that we hypothesized might introduce
biases (Table 1) had little effect on status outcomes, suggesting
that attempts to assess status in the face of limited or uncertain
data are worthwhile. In particular, there was almost no effect of
declines in monitoring coverage on the accuracy of benchmarks
or resulting status outcomes, even in the face of different trends
in capacity and reduced synchrony (i.e., zero autocorrelation in
recruitment deviates) among spawning populations within the
CU. Extreme declines in monitoring may impact assessments —
certainly, if no spawning populations are monitored, then our
ability to assess status will inevitably be compromised — but the
current approach to imputing and expanding spawner abun-
dances appeared robust to declines in monitoring coverage in the
range documented for the north and central coasts (English 2016;
Price et al. 2017).

Perhaps unexpectedly, misclassifications were not minimized
when the value of Expansion Factor III used in run reconstruc-
tions, correcting for observer efficiency, perfectly offset the obser-
vation bias in the underlying simulation. The bias in estimated

current spawner abundance was lowest when Expansion Factor III
matched observation bias, but the positive bias in benchmarks
under the base case meant that misclassifications under the SR
benchmarks were minimized when there was no observation bias
in spawners. Status outcomes under the percentile benchmarks
were unaffected by observation bias, as this bias was assumed to
be constant over time and affected the current and historical
spawner abundances equally.

Under our base case of high productivity and an abundance-
based HCR consistent with historical central coast chum salmon
harvest rates, most simulations had a true green status, but pes-
simistic misclassifications as amber were common under both SR
and percentile benchmarks. The estimated status from our simu-
lations roughly matched the status outcomes for seven central
coast chum CUs from that period, with the majority of CUs having
green status under the SR benchmarks and amber status under
the percentile benchmarks (Connors et al. 2018). (Note that status
of central coast chum salmon CUs has since declined; see the PSE
(www.salmonexplorer.ca) for the most up-to-date assessments.)
Consistent with the real status assessments, status under the per-
centile benchmarks tended to be poorer than status under the SR
benchmarks. Our simulations attributed this to a higher relative
bias in percentile benchmarks, as found for south coast chum
salmon under high-productivity scenarios (Holt et al. 2018). Pessi-
mistic misclassifications may lead to overly conservative man-
agement actions, consistent with the “precautionary principle”
(Foster et al. 2000), but may also result in foregone harvest and
adverse socioeconomic consequences (Walters et al. 2019).

Fig. 9. The effect of observation bias in the number of spawners (x axis) on performance measures under the base case. (a–b) The proportion
of simulations with correct green, amber, or red status or pessimistic misclassifications (hatched grey) and optimistic misclassifications
(black) under the SR benchmarks (a) and percentile benchmarks (b). (c–d) The percent relative bias (median ± interquartile range among 4000 MC
simulations) in the current spawner abundance (SAVG; black circles) and lower and upper benchmarks (red and green, respectively) under the
SR benchmarks (c) and the percentile benchmarks (d). The asterisk in panels (a–b) and grey zone in panels (c–d) indicate the default parameter
value of ̄ = –0.4 and the bias that matches the Expansion Factor III of F� = 1.5 applied in all simulations. See online Supplement1 for results
under the low-productivity, high-harvest case (results were similar). [Colour online.]
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For simulations with low productivity and high harvest rates
(i.e., true red status), the bias in benchmarks was negative, result-
ing in a high proportion of optimistic misclassifications. This rep-
resents a high-risk management scenario from a conservation
standpoint, particularly as the true underlying status is red. Fur-
ther, the absolute biases in benchmarks were more severe under
declines in capacity when status was predominantly red (produc-
tivity low) compared with predominantly green (productivity
high). The bias in SR benchmarks was particularly sensitive to the
underlying true status, presumably because productivity and re-
cruitment, which influence status, also affect the bias in SR pa-
rameters (Subbey et al. 2014) that arises due to SR linkage inherent
in the data (Walters 1985; Korman et al. 1995) and (or) due to error
in spawner estimates (Walters and Ludwig 1981; Kehler et al. 2002;
Kope 2006). More sophisticated modelling approaches, such as the
state-space models that can account for errors in variables and
allow for information to be shared among populations and (or)
CUs, may reduce bias in benchmarks and lead to more robust
status assignments (Staton et al. 2020).

Our results suggest that overestimating catch should be
avoided. In particular, under low productivity and high harvest
rates, optimistic misclassifications associated with overestimat-
ing catch and therefore underestimating the lower benchmark,
SGEN, may put populations at further risk. Under the base case of
high productivity and an HCR, overestimating catch resulted in
more frequent pessimistic misclassifications as the upper bench-
mark (SMSY) was overestimated, resulting in CUs with a true green
status being estimated as amber. In both cases, the impact of

overestimating catch has the potential to significantly bias assess-
ments; overestimating catch by �50% led to a 5%–8% increase in
misclassification rates. This level of catch overestimation (and
higher levels) may occur when fish caught in a PFMA and assigned
to the CU that overlaps with that PFMA were actually bound for
other CUs. This could occur in mixed-stock fisheries if genetic
stock identification is not undertaken to validate assumptions
regarding run timing and migration patterns. Increased efforts to
quantify catch composition, run timing, and spatial distribution
of Pacific salmon CUs are therefore needed to more accurately
estimate harvest rates and minimize misclassifications of biolog-
ical status.

Limitations, challenges, and future research
Closed-loop simulation models are powerful tools for evaluat-

ing management strategies and quantifying the biases in param-
eter estimation and status outcomes (Walters 1986; Peterman
2018), but are not without their weaknesses. As with any model,
our simulation model was an approximation of reality, and thus
we had to make a number of assumptions. Both the true popula-
tion dynamics and assessment submodel assumed a Ricker SR
relationship (Ricker 1954), but we recognize that there is consid-
erable model uncertainty. Distinguishing among different models
(e.g., Ricker versus Beverton–Holt) in assessing status would be
challenging, particularly under the declines in capacity that we
simulated to capture observed changes in freshwater habitat. The
Ricker model is commonly used to set management targets and
for simulating population dynamics of Pacific salmon (e.g.,
Peterman et al. 2000; Peacock and Holt 2012; Fleischman et al.
2013; Holt and Folkes 2015), and a full exploration of other true
models was beyond our scope.

We did not implement a bias correction when simulating
lognormal recruitment deviates, consistent with other Pacific
salmon simulation studies (e.g., Dorner et al. 2013; Cunningham
et al. 2019). This introduced a positive bias in mean recruitment
and subsequent estimates of productivity. Alternatively, one
could include a bias correction when simulating recruitment by
assuming the mean of 
y,j in eq. 7 is +�


2/2, and this may be best
practice moving forward (e.g., Hicks et al. 2020). However, there is
no clear consensus about whether this correction is necessary
when parameters are estimated from simulated data in an assess-
ment model without an adjustment of +�


2/2 (Hilborn and Walters
1992).

We considered true SR dynamics to operate at the spatial scale
of spawning populations (i.e., individual streams), but there is
evidence that the processes influencing productivity and density
dependence may operate at broader, regional spatial scales (e.g.,
Malick and Cox 2016). Other simulation models have incorporated
straying among spawning populations within a CU (e.g., Peacock
and Holt 2012; Holt and Folkes 2015). While that approach incor-
porates density dependence that may occur at broader spatial
scales, it also requires additional assumptions to be made about
the probabilities of straying among streams, which are largely
unknown.

Simulating true dynamics at the scale of individual spawning
populations also complicates the calculation of true status at the
CU level from SR benchmarks. We chose to calculate SR bench-
marks at the spawning population level and then sum across
spawning populations to calculate SMSY and SGEN at the CU level.
There are other approaches to calculate aggregate benchmarks,
but each has its own potential biases. For example, SR relation-
ships could be fit to the “true” data aggregated at the CU level and
SR benchmarks calculated from the resulting CU-level estimates
of productivity and density dependence. The way in which spawn-
ing population-level benchmarks are aggregated to CU-level
benchmarks may affect performance in our simulations, and a
full exploration of how different methods of aggregation affect
our results warrants future consideration.

Fig. 10. The effect of observation bias in catch (x axis) on
performance measures under the base case. (a) The proportion of
simulations with correct green, amber, or red status or pessimistic
misclassifications (hatched grey) and optimistic misclassifications
(black) under the SR benchmarks. (b) The percent relative bias
(median ± interquartile range among 4000 MC simulations) in the
current spawner abundance (SAVG; black circles) and lower and
upper benchmarks (red and green, respectively) under the SR
benchmarks. The asterisk in panel (a) and grey zone in panel (b)
indicate the default parameter value of �̄ = 0. Observation bias in
catch ranges from 63% underestimation (�̄ = –1) to 271%
overestimation (�̄ = 1). See online Supplement1 for results under the
low-productivity, high-harvest case. [Colour online.]
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Despite these limitations, the simulation model that we adapted
and applied is flexible enough that it can accommodate different
Pacific salmon species and life-history traits, opening the door to
future work investigating the impact of different assumptions
and the impact of the assumptions that we focused on under
additional scenarios. Here, we considered a relatively simple run-
reconstruction model, but further work is needed to quantify how
observation errors and uncertainty in the spatial and temporal
distributions of returns affects status outcomes when more com-
plex run-reconstruction models are used. Temporal shifts in bio-
logical parameters, including age-at-return (e.g., associated with
environmental change and selective fisheries) and productivity
(nonstationarity has been widely observed in Pacific salmon; e.g.,
Peterman and Dorner 2012; Malick and Cox 2016; Dorner et al.
2017), are also areas that warrant further exploration. Additional
simulations could also help inform methods in the assessment
process, such as the optimal time-series length for detecting
changes, whether benchmarks should be updated with each as-
sessment, and the best analytical approach to calculate SR bench-
marks (e.g., Bayesian hierarchical models versus single-stock
ordinary least squares).

Conclusions
Pacific salmon are one of the most data-rich groups of fish due

to their high economic, social, and cultural value, but nonetheless
our knowledge of their dynamics is uncertain. Assessing the bio-
logical status of Pacific salmon CUs is a conservation and manage-
ment priority given the continued declines of many stocks (e.g.,
COSEWIC 2016, 2017) and escalating threats to salmon conserva-
tion. Current government-led integrated status assessments un-
der the WSP include expert opinion on the data uncertainties and
risks unique to each CU (e.g., DFO 2015, 2016, 2018a), making the
process time- and resource-intensive. This has limited their timely
application to all 460+ Pacific salmon CUs in Canada (DFO 2019)
and also means that the process is not entirely transparent or
reproducible. The Pacific Salmon Foundation has implemented
data-driven biological status assessments based on a subset of the
indicators and benchmarks recommended under the WSP, with
the results accessible through the PSE (www.salmonexplorer.ca).
These data-driven assessments, similar to those undertaken by
other management and conservation organizations (e.g., Marine
Stewardship Council, COSEWIC, Pacific Salmon Commission), re-
quire assumptions to estimate spawner and recruit time series for
CUs. Given the lack of expert scrutiny of the data for each individ-
ual CU under this data-driven approach, it was important to un-
derstand how these assumptions may bias status outcomes under
a range of biological and management scenarios.

We found that the data-driven biological status assessments
were relatively insensitive to common assumptions in expanding
spawner abundances within the parameter ranges we explored,
but the rate and type of status misclassifications depended on the
underlying status of the CU and may be of greater concern for CUs
with poor status. To ensure the accuracy of data-driven status
assessments, increased efforts to collect data on catch composi-
tion, age-at-return, and spawner abundances are needed. Such
information will help, for example, to define plausible ranges of
error in catch estimation to lend confidence to estimates of re-
cruitment and thus assessments under SR benchmarks. Nonethe-
less, our research suggests that current efforts to assess status in
the face of imperfect and incomplete data are worthwhile for
central coast chum salmon and other similar Pacific salmon pop-
ulations and can provide a timely approach to assessing status for
CUs that complements more thorough integrated status assess-
ments.
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Appendix A

Table A1. Table of default values for parameters in the simulation model that were used unless otherwise specified (e.g., in sensitivity analyses).

Submodel Parameter Symbol Default value Range Ref.

General Years over which the simulation is run t: return year 50 —
y: brood year

No. of indicator streams I 15 1–41 1
No. of nonindicator streams J 20 1–100 1

Population
dynamics

Productivity ā 1.40 — 2
ai � Nā, �a

2� �a
2 0.22 — 2

Density dependence (initial) �b,I 7.95 — 2
bt,i�0 � 1/SMAXi

�b,I
2 2.07 — 2

log SMAXi
� N�b,I, �b,I

2 � �b,J 6.95 — 2
�b,J

2 1.39 — 2
Temporal autocorrelation 	 0.422 — 2
Variance in recruitment deviates within spawning populations �


2 1.28 — 2
Correlation among spawning populations in recruitment deviates � 0.46 — 2
Average proportions for age-at-maturity p̄g p̄3 = 0.23 — 3

p̄4 = 0.64
p̄5 = 0.13

Interannual variability in age-at-maturity �̄ 0.8 — 4
Maximum target harvest rate hMAX

′ 0.42 — 5
Shape parameter for that harvest rule m 1.13 × 10–5 — 5
Standard deviation in outcome uncertainty around harvest rate �h 0.13 — 5

Observation Lognormal bias in observed spawners ̄ –0.4 –1.6 to 0.0 6
Lognormal variance in observed spawners �

2 0.25 — 4
Lognormal bias in observed catch �̄ 0 –1.0 to 1.0 —
Lognormal variance in observed catch ��

2 0.04 — 4
Variability in observed age-at-return �̄r 0.1 — 4

Note: See text for further explanation of the values and the online Supplement1 for details of estimation for those based on raw data. For parameters that were part
of sensitivity analyses, the range in parameter values that was explored is indicated. References: 1. Based on the range of indicator and nonindicator streams reported
in the Pacific Salmon Explorer (www.salmonexplorer.ca) for the eight central coast chum CUs. 2. Calculated from river-level stock–recruitment data for central coast
chum CUs. See online Supplement1 for details. 3. From the NCCDBV2 (Challenger et al. 2018). 4. Same as assumed in Holt et al. (2018) for south coast chum salmon.
5. Calculated from CU-level harvest rates and total return size, from the Salmon Watersheds Data Library (Salmon Watersheds Program–Pacific Salmon Foundation
2019). See online Supplement1 for details. 6. Based on expert opinion. Expansion Factor of F ′′′ = 1.5 in tables A3–A4 of English et al. (2016).
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